

https://taylorandfrancis.com

Fifth edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in
any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
Names: Marschner, Steve, author. | Shirley, Peter, author.
Title: Fundamentals of computer graphics / Steve Marschner, Peter Shirley.
Description: 5th edition. | Boca Raton: CRC Press, 2021. | Includes
bibliographical references and index. Identifiers: LCCN 2021008492 |
ISBN 9780367505035 (hardback) | ISBN 9781003050339 (ebook)
Subjects: LCSH: Computer graphics.
Classification: LCC T385 .M36475 2021 | DDC 006.6—dc23
LC record available at https://lccn.loc.gov/2021008492

ISBN: 978-0-367-50503-5 (hbk)
ISBN: 978-0-367-50558-5 (pbk)	
ISBN: 978-1-003-05033-9 (ebk)

Typeset in Times
by codeMantra

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk

Contents

Preface xi

Acknowledgments xiii

Authors xv

1 Introduction 1
1.1 Graphics Areas . 2
1.2 Major Applications . 3
1.3 Graphics APIs . 4
1.4 Graphics Pipeline . 4
1.5 Numerical Issues . 5
1.6 Efficiency . 7
1.7 Designing and Coding Graphics Programs 8

2 Miscellaneous Math 13
2.1 Sets and Mappings . 13
2.2 Solving Quadratic Equations 17
2.3 Trigonometry . 18
2.4 Vectors . 21
2.5 Integration . 31
2.6 Density Functions . 33
2.7 Curves and Surfaces . 34
2.8 Linear Interpolation . 49
2.9 Triangles . 49
2.10 Discrete probability . 54
2.11 Continuous probability . 56
2.12 Monte Carlo Integration . 57

3 Raster Images 63
3.1 Raster Devices . 64
3.2 Images, Pixels, and Geometry 69
3.3 RGB Color . 74
3.4 Alpha Compositing . 75

v

Preface

This edition of Fundamentals of Computer Graphics includes substantial rewrites
of the material on shading, light reflection, and path tracing, as well as many
corrections throughout. This book now provides a better introduction to the tech-
niques that go by the names of physics-based materials and physics-based ren-
dering and are becoming predominant in actual practice. This material is now
better integrated, and we think this book maps well to the way many instructors
are organizing graphics courses at present.

The organization of this book remains substantially similar to the fourth edi-
tion. As we have revised this book over the years, we have endeavored to retain
the informal, intuitive style of presentation that characterizes the earlier editions,
while at the same time improving consistency, precision, and completeness. We
hope the reader will find the result is an appealing platform for a variety of courses
in computer graphics.

About the Cover

The cover image is from Tiger in the Water by J. W. Baker (brushed and air-
brushed acrylic on canvas, 16” by 20”, www.jwbart.com).

The subject of a tiger is a reference to a wonderful talk given by Alain Fournier
(1943–2000) at a workshop at Cornell University in 1998. His talk was an evoca-
tive verbal description of the movements of a tiger. He summarized his point:

Even though modelling and rendering in computer graphics have
been improved tremendously in the past 35 years, we are still not
at the point where we can model automatically a tiger swimming in
the river in all its glorious details. By automatically I mean in a way
that does not need careful manual tweaking by an artist/expert.

The bad news is that we have still a long way to go.

The good news is that we have still a long way to go.

xi

http://www.jwbart.com

http://www.cs.cornell.edu
mailto:Pleasefeelfreetocontactusatsrm@cs.cornell.edu
mailto:orptrshrl@gmail.com

Acknowledgments

The following people have provided helpful information, comments, or feedback
about the various editions of this book: Ahmet Oğuz Akyüz, Josh Andersen,
Beatriz Trinchão Andrade Zeferino Andrade, Bagossy Attila, Kavita Bala, Mick
Beaver, Robert Belleman, Adam Berger, Adeel Bhutta, Solomon Boulos, Stephen
Chenney, Michael Coblenz, Greg Coombe, Frederic Cremer, Brian Curtin, Dave
Edwards, Jonathon Evans, Karen Feinauer, Claude Fuhrer, Yotam Gingold, Amy
Gooch, Eungyoung Han, Chuck Hansen, Andy Hanson, Razen Al Harbi, Dave
Hart, John Hart, Yong Huang, John “Spike” Hughes, Helen Hu, Vicki Interrante,
Wenzel Jakob, Doug James, Henrik Wann Jensen, Shi Jin, Mark Johnson, Ray
Jones, Revant Kapoor, Kristin Kerr, Erum Arif Khan, Mark Kilgard, Fangjun
Kuang, Dylan Lacewell, Mathias Lang, Philippe Laval, Joshua Levine, Marc
Levoy, Howard Lo, Joann Luu, Mauricio Maurer, Andrew Medlin, Ron Metoyer,
Keith Morley, Eric Mortensen, Koji Nakamaru, Micah Neilson, Blake Nelson,
Michael Nikelsky, James O’Brien, Hongshu Pan , Steve Parker, Sumanta Pat-
tanaik, Matt Pharr, Ken Phillis Jr, Nicolò Pinciroli, Peter Poulos, Shaun Ramsey,
Rich Riesenfeld, Nate Robins, Nan Schaller, Chris Schryvers, Tom Sederberg,
Richard Sharp, Sarah Shirley, Peter-Pike Sloan, Hannah Story, Tony Tahbaz, Jan-
Phillip Tiesel, Bruce Walter, Alex Williams, Amy Williams, Chris Wyman, Kate
Zebrose, and Angela Zhang.

Ching-Kuang Shene and David Solomon allowed us to borrow their exam-
ples. Henrik Wann Jensen, Eric Levin, Matt Pharr, and Jason Waltman generously
provided images. Brandon Mansfield helped improve the discussion of hierarchi-
cal bounding volumes for ray tracing. Philip Greenspun (philip.greenspun.com)
kindly allowed us to use his photographs. John “Spike” Hughes helped improve
the discussion of sampling theory. Wenzel Jakob’s Mitsuba renderer was invalu-
able in creating many figures. We are extremely thankful to J. W. Baker for help-
ing create the cover Pete envisioned. In addition to being a talented artist, he was
a great pleasure to work with personally.

Many works that were helpful in preparing this book are cited in the chap-
ter notes. However, a few key texts that influenced the content and presentation
deserve special recognition here. These include the two classic computer graph-
ics texts from which we both learned the basics: Computer Graphics: Princi-
ples & Practice (Foley, Van Dam, Feiner, & Hughes, 1990) and Computer Graph-
ics (Hearn & Baker, 1986). Other texts include both of Alan Watt’s influential
books (Watt, 1993, 1991), Hill’s Computer Graphics Using OpenGL (Francis

xiii

http://philip.greenspun.com

Authors

Steve Marschner is a Professor of Computer Science at Cornell University. He
obtained his Sc.B. from Brown University in 1993 and his Ph.D. from Cornell
in 1998. He held research positions at Microsoft Research and Stanford Uni-
versity before joining Cornell in 2002. He is recipient of the SIGGRAPH Com-
puter Graphics Achievement Award in 2015 and co-recipient of a 2003 Technical
Academy Award.

Peter Shirley is a Distinguished Research Scientist at NVIDIA. He held academic
positions at Indiana University, Cornell University, and the University of Utah. He
obtained a B.A. in Physics from Reed College in 1985 and a Ph.D. in Computer
Science from University of Illinois in 1991.

xv

https://taylorandfrancis.com

1

Introduction

The term computer graphics describes any use of computers to create and ma-
nipulate images. This book introduces the algorithmic and mathematical tools
that can be used to create all kinds of images—realistic visual effects, informative
technical illustrations, or beautiful computer animations. Graphics can be two- or
three-dimensional; images can be completely synthetic or can be produced by ma-
nipulating photographs. This book is about the fundamental algorithms and math-
ematics, especially those used to produce synthetic images of three-dimensional
objects and scenes.

Actually doing computer graphics inevitably requires knowing about specific
hardware, file formats, and usually a graphics API (see Section 1.3) or two.
Computer graphics is a rapidly evolving field, so the specifics of that knowl-

API: application program
interface.

edge are a moving target. Therefore, in this book we do our best to avoid de-
pending on any specific hardware or API. Readers are encouraged to supplement
the text with relevant documentation for their software and hardware environ-
ment. Fortunately, the culture of computer graphics has enough standard termi-
nology and concepts that the discussion in this book should map nicely to most
environments.

This chapter defines some basic terminology and provides some historical
background, as well as information sources related to computer graphics.

1

2 1. Introduction

1.1 Graphics Areas

Imposing categories on any field is dangerous, but most graphics practitioners
would agree on the following major areas of computer graphics:

• Modeling deals with the mathematical specification of shape and appear-
ance properties in a way that can be stored on the computer. For example,
a coffee mug might be described as a set of ordered 3D points along with
some interpolation rule to connect the points and a reflection model that
describes how light interacts with the mug.

• Rendering is a term inherited from art and deals with the creation of shaded
images from 3D computer models.

• Animation is a technique to create an illusion of motion through sequences
of images. Animation uses modeling and rendering but adds the key issue
of movement over time, which is not usually dealt with in basic modeling
and rendering.

There are many other areas that involve computer graphics, and whether they are
core graphics areas is a matter of opinion. These will all be at least touched on in
the text. Such related areas include the following:

• User interaction deals with the interface between input devices such as mice
and tablets, the application, feedback to the user in imagery, and other sen-
sory feedback. Historically, this area is associated with graphics largely be-
cause graphics researchers had some of the earliest access to the input/out-
put devices that are now ubiquitous.

• Virtual reality attempts to immerse the user into a 3D virtual world. This typ-
ically requires at least stereo graphics and response to head motion. For true
virtual reality, sound and force feedback should be provided as well. Be-
cause this area requires advanced 3D graphics and advanced display tech-
nology, it is often closely associated with graphics.

• Visualization attempts to give users insight into complex information via
visual display. Often, there are graphic issues to be addressed in a visual-
ization problem.

• Image processing deals with the manipulation of 2D images and is used in
both the fields of graphics and vision.

• Three-dimensional scanning uses range-finding technology to create mea-
sured 3D models. Such models are useful for creating rich visual imagery,
and the processing of such models often requires graphics algorithms.

1.2. Major Applications 3

• Computational photography is the use of computer graphics, computer vi-
sion, and image processing methods to enable new ways of photographi-
cally capturing objects, scenes, and environments.

1.2 Major Applications

Almost any endeavor can make some use of computer graphics, but the major
consumers of computer graphics technology include the following industries:

• Video games increasingly use sophisticated 3D models and rendering algo-
rithms.

• Cartoons are often rendered directly from 3D models. Many traditional
2D cartoons use backgrounds rendered from 3D models, which allow a
continuously moving viewpoint without huge amounts of artist time.

• Visual effects use almost all types of computer graphics technology. Almost
every modern film uses digital compositing to superimpose backgrounds
with separately filmed foregrounds. Many films also use 3D modeling and
animation to create synthetic environments, objects, and even characters
that most viewers will never suspect are not real.

• Animated films use many of the same techniques that are used for visual
effects, but without necessarily aiming for images that look real.

• CAD/CAM stands for computer-aided design and computer-aided manufac-
turing. These fields use computer technology to design parts and products
on the computer and then, using these virtual designs, to guide the man-
ufacturing process. For example, many mechanical parts are designed in
a 3D computer modeling package and then automatically produced on a
computer-controlled milling device.

• Simulation can be thought of as accurate video gaming. For example, a
flight simulator uses sophisticated 3D graphics to simulate the experience
of flying an airplane. Such simulations can be extremely useful for initial
training in safety-critical domains such as driving, and for scenario training
for experienced users such as specific fire-fighting situations that are too
costly or dangerous to create physically.

• Medical imaging creates meaningful images of scanned patient data. For
example, a computed tomography (CT) dataset is composed of a large 3D

4 1. Introduction

rectangular array of density values. Computer graphics is used to create
shaded images that help doctors extract the most salient information from
such data.

• Information visualization creates images of data that do not necessarily have
a “natural” visual depiction. For example, the temporal trend of the price
of ten different stocks does not have an obvious visual depiction, but clever
graphing techniques can help humans see the patterns in such data.

1.3 Graphics APIs

A key part of using graphics libraries is dealing with a graphics API. An applica-
tion program interface (API) is a standard collection of functions to perform a set
of related operations, and a graphics API is a set of functions that perform basic
operations such as drawing images and 3D surfaces into windows on the screen.

Every graphics program needs to be able to use two related APIs: a graphics
API for visual output and a user-interface API to get input from the user. There
are currently two dominant paradigms for graphics and user-interface APIs. The
first is the integrated approach, exemplified by Java, where the graphics and user-
interface toolkits are integrated and portable packages that are fully standardized
and supported as part of the language. The second is represented by Direct3D
and OpenGL, where the drawing commands are part of a software library tied to
a language such as C++, and the user-interface software is an independent entity
that might vary from system to system. In this latter approach, it is problematic
to write portable code, although for simple programs, it may be possible to use a
portable library layer to encapsulate the system specific user-interface code.

Whatever your choice of API, the basic graphics calls will be largely the same,
and the concepts of this book will apply.

1.4 Graphics Pipeline

Every desktop computer today has a powerful 3D graphics pipeline. This is a
special software/hardware subsystem that efficiently draws 3D primitives in per-
spective. Usually, these systems are optimized for processing 3D triangles with
shared vertices. The basic operations in the pipeline map the 3D vertex locations
to 2D screen positions and shade the triangles so that they both look realistic and
appear in proper back-to-front order.

1.5. Numerical Issues 5

Although drawing the triangles in valid back-to-front order was once the most
important research issue in computer graphics, it is now almost always solved
using the z-buffer, which uses a special memory buffer to solve the problem in a
brute-force manner.

It turns out that the geometric manipulation used in the graphics pipeline can
be accomplished almost entirely in a 4D coordinate space composed of three tra-
ditional geometric coordinates and a fourth homogeneous coordinate that helps
with perspective viewing. These 4D coordinates are manipulated using 4 × 4
matrices and 4-vectors. The graphics pipeline, therefore, contains much machin-
ery for efficiently processing and composing such matrices and vectors. This
4D coordinate system is one of the most subtle and beautiful constructs used in
computer science, and it is certainly the biggest intellectual hurdle to jump when
learning computer graphics. A big chunk of the first part of every graphics book
deals with these coordinates.

The speed at which images can be generated depends strongly on the number
of triangles being drawn. Because interactivity is more important in many appli-
cations than visual quality, it is worthwhile to minimize the number of triangles
used to represent a model. In addition, if the model is viewed in the distance,
fewer triangles are needed than when the model is viewed from a closer distance.
This suggests that it is useful to represent a model with a varying level of detail
(LOD).

1.5 Numerical Issues

Many graphics programs are really just 3D numerical codes. Numerical issues
are often crucial in such programs. In the “old days,” it was very difficult to han-
dle such issues in a robust and portable manner because machines had different
internal representations for numbers, and even worse, handled exceptions in dif-
ferent and incompatible ways. Fortunately, almost all modern computers conform
to the IEEE floating-point standard (IEEE Standards Association, 1985). This al-
lows the programmer to make many convenient assumptions about how certain
numeric conditions will be handled.

Although IEEE floating-point has many features that are valuable when cod-
ing numeric algorithms, there are only a few that are crucial to know for most
situations encountered in graphics. First, and most important, is to understand
that there are three “special” values for real numbers in IEEE floating-point:

1. Infinity (∞). This is a valid number that is larger than all other valid num-
bers.

6 1. Introduction

2. Minus infinity (−∞). This is a valid number that is smaller than all other
valid numbers.

3. Not a number (NaN). This is an invalid number that arises from an operation
with undefined consequences, such as zero divided by zero.

The designers of IEEE floating-point made some decisions that are extremely
convenient for programmers. Many of these relate to the three special values
above in handling exceptions such as division by zero. In these cases, an exception
is logged, but in many cases, the programmer can ignore that. Specifically, for any
positive real number a, the following rules involving division by infinite values

IEEE floating-point has
two representations for
zero, one that is treated
as positive and one that is
treated as negative. The
distinction between –0
and +0 only occasionally
matters, but it is worth
keeping in mind for those
occasions when it does.

hold

+a/(+∞) = +0,

−a/(+∞) = −0,
+a/(−∞) = −0,
−a/(−∞) = +0.

Other operations involving infinite values behave the way one would expect.
Again for positive a, the behavior is as follows:

∞+∞ = +∞,

∞−∞ = NaN,

∞×∞ =∞,

∞/∞ = NaN,

∞/a =∞,

∞/0 =∞,

0/0 = NaN.

The rules in a Boolean expression involving infinite values are as expected:

1. All finite valid numbers are less than +∞.

2. All finite valid numbers are greater than −∞.

3. −∞ is less than +∞.

The rules involving expressions that have NaN values are simple:

1. Any arithmetic expression that includes NaN results in NaN.

2. Any Boolean expression involving NaN is false.

1.6. Efficiency 7

Perhaps the most useful aspect of IEEE floating-point is how divide-by-zero is
handled; for any positive real number a, the following rules involving division by
zero values hold

Some care must be taken
if negative zero (–0) might
arise.

+a/+0 = +∞,

−a/+0 = −∞.

There are many numeric computations that become much simpler if the
programmer takes advantage of the IEEE rules. For example, consider the
expression:

a =
1

1
b +

1
c

.

Such expressions arise with resistors and lenses. If divide-by-zero resulted in a
program crash (as was true in many systems before IEEE floating-point), then
two if statements would be required to check for small or zero values of b or c.
Instead, with IEEE floating-point, if b or c is zero, we will get a zero value for a as
desired. Another common technique to avoid special checks is to take advantage
of the Boolean properties of NaN. Consider the following code segment:

a = f(x)

if (a > 0) then
do something

Here, the function f may return “ugly” values such as∞ or NaN, but the if con-
dition is still well-defined: it is false for a = NaN or a = −∞ and true for
a = +∞. With care in deciding which values are returned, often the if can make
the right choice, with no special checks needed. This makes programs smaller,
more robust, and more efficient.

1.6 Efficiency

There are no magic rules for making code more efficient. Efficiency is achieved
through careful tradeoffs, and these tradeoffs are different for different architec-
tures. However, for the foreseeable future, a good heuristic is that programmers
should pay more attention to memory access patterns than to operation counts.
This is the opposite of the best heuristic of two decades ago. This switch has oc-
curred because the speed of memory has not kept pace with the speed of proces-
sors. Since that trend continues, the importance of limited and coherent memory
access for optimization should only increase.

A reasonable approach to making code fast is to proceed in the following
order, taking only those steps which are needed:

8 1. Introduction

1. Write the code in the most straightforward way possible. Compute inter-
mediate results as needed on the fly rather than storing them.

2. Compile in optimized mode.

3. Use whatever profiling tools exist to find critical bottlenecks.

4. Examine data structures to look for ways to improve locality. If possible,
make data unit sizes match the cache/page size on the target architecture.

5. If profiling reveals bottlenecks in numeric computations, examine the as-
sembly code generated by the compiler for missed efficiencies. Rewrite
source code to solve any problems you find.

The most important of these steps is the first one. Most “optimizations” make the
code harder to read without speeding things up. In addition, time spent upfront
optimizing code is usually better spent correcting bugs or adding features. Also,
beware of suggestions from old texts; some classic tricks such as using integers
instead of reals may no longer yield speed because modern CPUs can usually
perform floating-point operations just as fast as they perform integer operations.
In all situations, profiling is needed to be sure of the merit of any optimization for
a specific machine and compiler.

1.7 Designing and Coding Graphics Programs

Certain common strategies are often useful in graphics programming. In this
section, we provide some advice that you may find helpful as you implement the
methods you learn about in this book.

1.7.1 Class Design

A key part of any graphics program is to have good classes or routines for geomet-
ric entities such as vectors and matrices, as well as graphics entities such as RGB
colors and images. These routines should be made as clean and efficient as pos-

I believe strongly in the
KISS (“keep it simple,
stupid”) principle, and in
that light, the argument for
two classes is not com-
pelling enough to justify
the added complexity.
—P.S.

sible. A universal design question is whether locations and displacements should
be separate classes because they have different operations; e.g., a location mul-
tiplied by one-half makes no geometric sense while one-half of a displacement
does (Goldman, 1985; DeRose, 1989). There is little agreement on this question,
which can spur hours of heated debate among graphics practitioners, but for the
sake of example, let’s assume we will not make the distinction.

I like keeping points and
vectors separate because it
makes code more readable
and can let the compiler
catch some bugs.
—S.M.

1.7. Designing and Coding Graphics Programs 9

This implies that some basic classes to be written include

• vector2. A 2D vector class that stores an x- and y-component. It should
store these components in a length-2 array so that an indexing operator can
be well supported. You should also include operations for vector addition,
vector subtraction, dot product, cross product, scalar multiplication, and
scalar division.

• vector3. A 3D vector class analogous to vector2.

• hvector. A homogeneous vector with four components (see Chapter 8).

• rgb. An RGB color that stores three components. You should also include
operations for RGB addition, RGB subtraction, RGB multiplication, scalar
multiplication, and scalar division.

• transform. A 4 × 4 matrix for transformations. You should include a ma-
trix multiply and member functions to apply to locations, directions, and
surface normal vectors. As shown in Chapter 7, these are all different.

• image. A 2D array of RGB pixels with an output operation.
You might also consider a
special class for unit-length
vectors, although I have
found them more pain than
they are worth. —P.S.

In addition, you might or might not want to add classes for intervals, orthonormal
bases, and coordinate frames.

1.7.2 Float vs. Double

I suggest using doubles for
geometric computation and
floats for color computa-
tion. For data that occupies
a lot of memory, such as
triangle meshes, I suggest
storing float data, but con-
verting to double when data
are accessed through mem-
ber functions. —P.S.

Modern architecture suggests that keeping memory use down and maintaining
coherent memory access are the keys to efficiency. This suggests using single-
precision data. However, avoiding numerical problems suggests using double-
precision arithmetic. The tradeoffs depend on the program, but it is nice to have a
default in your class definitions.

1.7.3 Debugging Graphics Programs

I advocate doing all com-
putations with floats until
you find evidence that dou-
ble precision is needed in a
particular part of the code.
—S.M.

If you ask around, you may find that as programmers become more experienced,
they use traditional debuggers less and less. One reason for this is that using such
debuggers is more awkward for complex programs than for simple programs.
Another reason is that the most difficult errors are conceptual ones where the
wrong thing is being implemented, and it is easy to waste large amounts of time
stepping through variable values without detecting such cases. We have found
several debugging strategies to be particularly useful in graphics.

